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Abstract

This paper is concerned with the role of supplementary
conditions, such as the entropy inequality at shock waves
or kinetic relations at phase boundaries, in the selection
of physically appropriate solutions to systems of quasi-
linear differential equations describing wave propa-
gation. The differences in this respect among various
materials are illustrated by contrasting the behavior of
waves in linear, bilinear and trilinear elastic bars.

1. Introduction. Among the distinctions between waves governed by the linear wave

equation and those governed by quasilinear equations, one pertains to the identification of

physically meaningful solutions through supplementary conditions such as the entropy inequality

at discontinuities; see, for example, [1]. Indeed, the fact that such additional requirements, while

unnecessary in linear problems, are needed in the nonlinear case has long been familiar from the

theory of shock waves in classical gas dynamics [2]. More recently, continuum models of the

dynamics of phase transitions have supplied examples of quasilinear systems for which

uniqueness ,., i, thc Cauchy problem, even with the entropy inequality in force; see [3-61.
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In the present paper, we are concerned with wave propagation in one-dimensional elastic
A

bars. For such bars, the nature of the relation a = 0(y) between the stress T and the strain y

controls the extent to which the fundamental field equations and jump conditions must be

supplemented in order to secure uniqueness in initial value-problems. When the stress-strain

relation is linear, say aY = iy with t>O, no additional information is needed. In contrast, in the
A

presence of a nonlinear relation a = G(Y), uniqueness for initial value problems generally fails; if
A
a(y) increases monotonically with y and the stress-strain curve is either strictly convex or strictly

concave (the "genuinely nonlinear" case [1]), uniqueness is restored by imposing the entropy

inequality at all strain discontinuities; see [1, 7]. For stress-strain relations of the kind used in
A

simple continuum models of stress-induced phase transformations, the function (Ty) is neither

monotonic in y nor strictly convex or concave, and the entropy inequality at wave-fronts is

insufficient for uniqueness; additional constitutive information describing the physics of the

phase transition must be added to the model.

In order to provide an elementary illustration of the situation just described, we consider
A

three cases: in the first of these, (Ty) is linear in y, and elastic waves are governed by the linear
A

wave equation in one space dimension. In the second case, a(Y) is bilinear, and the theory is

qualitatively analogous to that for gas dynamics, but much simpler in detail. Finally, we
A

consider a "trilinear" function 0(y), corresponding to a material that can undergo stress-induced

solid-solid phase transitions. In each case, we study the Riemann problem, the special version of

the Cauchy problem that reveals the wave pattern through which a given discontinuity will

evolve. For piecewise linear stress-strain relations, the Riemann problems of interest can be

solved explicitly and globally, making clear the extent of the need for restrictions beyond those

imposed by the fundamental differential equations and jump conditions.
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2. Basic equations. Suppose a bar of unit cross-sectional area occupies the interval

(-,,c, o) of the x-axis in the undeformed state. During a motion, the particle at x in the unde-

formed state is carried to x + u(x,t) at time t, where u(x,t) is the displacement. We assume that u

is continuous with piecewise continuous first and second derivatives for -0 < x < -, t _> 0. The

strain y(x,t) and particle velocity v(x,t) are defined by

Y=u , v=u t , (2.1)

wherever the derivatives exist. Balance of momentum and compatibility of y, v require that

ox = pv= , (2.2)

v= , (2.3)

at points where a, v and y are smooth; here, a(x,t) is the stress at (x,t), and p is the constant mass

density in the undeformed state. If either y or v is discontinuous across a curve x = s(t) in the

x, t-plane, balance of momentum and the smoothness of u provide the following jump condit-

ions:

-T =-gs (+- '), (2.4)

+- , =-s (Y - ,), (2.5)

where s(t) is the velocity of the moving strain discontinuity, and for any g(x,t) we have written
+
g = g(s(t)±,t).
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For the elastic bar,

S= (y) , -1 < y< oo, (2.6)

where a(y), assumed to be continuous with a piecewise continuous derivative, is the given stress

response function of the material. The strain y is restricted to the range (- 1, +-0) in order to

assure that the mapping x -) x + u(x,t) is invertible for each t.

Suppose that, during a motion, y, v and Y are smooth on [x1, x2]x[t, t2] except for a

single moving strain jump at x=s(t). Let

Y^

W(y) = a(y') dy' , y >-1, (2.7)

0

be the stored energy per unit undeformed volume of the bar, so that the total mechanical energy

E(t) at time te [t1, t2] associated with the piece of the bar under consideration is

x2
E1)4 [wy+pv2J]dx . (2.8)

x1

A direct calculation using (2.1) - (2.8) shows that

a(X2,t)v(xz,t) - a(Xlt)v(x1,t) - E(t) = f(t)s(t), (2.9)

where the driving force f acting on the strain discontinuity is defined by
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4-
A(- f AI

f f 'y,) a(y) dy- -(+)(- • (2.10)

2

+ + + + A
Heie y y(t) --̂ ,(s(t)+,t) and a = a(t) = a(s(t)+,t) = a(y(s(t)±,t)) are the strains and stresses,

A +
respectively, on the two sides of the strain discontinuity. Geometrically, f(y, y) may be

interpreted as the difference between the area under the stress-strain curve between 'y and y and

the area of the trapezoid determined by j', ,F and

The left side of (2.9) represents the excess of the rate of work of the external forces over

the rate of change of mechanical energy. Although this excess vanishes for smooth strain fields

(since f=0) or for stationary discontinuities (s=0), this is not the case in general. The right side of

(2.9), which is the rate of mechanical dissipation, may be viewed as the rate of "work" done by

the driving force f in moving the discontinuity at a velocity s. If the material is considered to be

thermoelastic, and if for simplicity we make the unrealistic assumption that the motions

considered take place isothermally, then as shown in [8], the second law of thermodynamics

requires that

f(t)s(t) 0. (2.11)

The entropy inequality (2.11) must hold at all strain discontinuities and at all times; under

isothermal conditions, it is equivalent to the assertion that the entropy of a particle cannot

decrease as the particle crosses a strain discontinuity.

At the moving discontinuity x=s(t), the jump conditions (2.4), (2.5) imply

A + A _

p2 +(y)- ?y) (2.12)
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A + A _ -

[,(Y CY ) =p(v- (2.13)

The right side of (2.12) is thus necessarily non-negative for any pair of strains y, y that can occur

at a strain jump. Conversely, if ,, y are numbers in (-1, c) such that the right side of (2.12) is

non-negative, then it is possible to find numbers v, v and s through (2.13) and (2.12) such that

the jump conditions (2.4), (2.5) and the entropy inequality (2.11) are satisfied. Unless the value

of f associated with Y, Y through (2.10) is zero, only one of the two values of s determined by

(2.12) will be consistent with (2.11). When f vanishes, both values of s determined by (2.12) are

consistent with (2.11), and the discontinuity may propagate in either direction.

3. The Riemann problem. In this special case of the Cauchy problem, we look for weak

solutions y, v of the system (2.2), (2.3), (2.6) on the upper half of the x,t-plane that satisfy the

following initial conditions:

S<x<, (x,+) = V L <0, (3.1)

YR' 0<x<+ , vIV R, 0<x<+oo,

where YL, YR' L , and vR are given constants, with YL > -1, yR > -1. Solutions y, v must of course

satisfy the jump conditions (2.4), (2.5).

The Riemann problem is invariant under the scale change x->kx, t->kt, where k is any

constant. We seek solutions with this same invariance. It is easily shown that, if the stress-strain
A

relation o=cy(Y) is piecewise linear, strain discontinuities in such solutions can occur only on rays

issuing from the origin in the x,t-plane: x=st, s = constant; moreover, between such rays, yand v

must be constant. For such materials, "fans" cannot occur. Thus scale-invariant solutions to a

Riemann problem for a piecewise linear material have the following form (Figure 1):
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yAx,t)=yj, v(x,t)=v, fors. t<xs j .... N, (3.2)JJ j

where Yj, vj , s. and N are constants, with N a non-negative integer, and 70-L' N=7 R' VO=VL,

VN=VR, S0=-,' S N+I=+-. The case N=O, which can occur only when 7L--YR' VL=VR, is trivial;

we may therefore assume that N>I in all that follows. The y.'s must all exceed -1, and one must
J

alsohavey yforj=O,...,N-1.

At each of the N discontinuities in (3.2), the jump conditions (2.4), (2.5) require that

A A j =1....N. (3.3)

7()- I( ) .)=- ps (v.- V.1),

Finally, the entropy inequality (2.11) is to be imposed at each strain discontinuity.

A

4. Linear materials. When (T(y)=lry, where p.>O is the modulus of elasticity, (2.12)

reduces to s---+c, where c=(p/p)1 /2 . As a result, there can be at most two rays x=st bearing strain

discontinuities in the solution to the Riemann problem, so that in (3.2), one has N=2. It is then a

simple matter to enforce the jump conditions (3.3) and thence to find the unique solution to the

Riemann problem for the linear material:

='YL' v=v L forx<-ct,

y=h,v=vL-cyL+ch for-ct<x<ct, (4.1)

7=7R y=VR forx>ct,

where the parameter h is given by
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h =L R R L (4.2)
2c

For the linear material, the driving force f of (2.10) vanishes identically in y, 'y, as is easily

verified; the entropy inequality (2.12) is thus trivially satisfied and plays no role in this case.

5. Bilinear materials. Suppose now that the stress response function has the following

bilinear form:

A 1y for-l<y:yM,
= (5.1)

1 2YY + (1" 2)M for y > yM.

In this section, we show that the Riemann problem for the bilinear materiai has only one solution

that conforms to the entropy inequality; we also show that uniqueness fails if the entropy

inequality is not enforced.
A

A point (y, c(y)) is said to be on branch 1 of the stress-strain curve if -1 < y < yM' on

branch 2 ify > yM" For definiteness, we assume that 4,, < .i 1 , so that the material softens in

branch 2; the case .t2 > 1 can be discussed in an entirely similar way.

A propagating discontinuity with strains y', is a 1,1-sound wave if y and y are both

branch- I strains; a 2,2-sound wave is defined analogously. If one of the strains y, y happens to

have the value YM corresponding to the corner in the stress-strain curve, we call the discontinuity

a 1, 1 - or a 2,2- sound wave according to whether the remaining strain is on branch I or branch 2.

If y and y belong to branch I and branch 2, respectively, we speak of a 1,2-shock wave; in a

2,1 -shock wave, the branches for ' and y are reversed.
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From (2.12), one finds that the velocity o' a 1,1-sound wave is ±c 1, where Cl=(11tl/2;

for a 2,2-sound wave, the velocity is ±c2 , where c2= (. 2/p) 1/2. Note that c1>c 2, so that 1,1-sound

waves travel faster than 2,2's. For shock waves, the velocity depends on the local strains; (2.12)

yields:

2+ 2 - 2 2*2 c2 Y clY+(c 2 )YM
s = tor a 1,2-shock wave, (5.2)

+ -

2+ 2- (2 2\
2 _ "1 y-C 2 y c

s 2 for a 2,1-shock wave. (5.3)
'Y - Y

It folows that for either type of shock wave,

2 *2 2c2 <s <c 1 , (5.4)

so that the speed Isl of a shock wave is always "intersonic".

For sound waves, the strains on either side of the jump belong to the same linear branch

of the stress-strain curve; it follows from (2.10) that the driving force f at a sound wave of either

type vanishes, and the entropy :nequality (2.11) is trivially satisfied.

For a 1,2-shock wave, the area under :'-e stress-strain curve between 7and always

exceeds the area of the trapezoid determined byy' y a(y) and T(y) when 12 < 91' so the driving

force f of (2.10) is always positive at such a wave. At a shock of 2,1-type, f is always negative.

It then follows from (5.4) and the entropy inequality (2.11) that !he velocity s of a 1,2-shock

wave is positive, while that of a 2,1 -shock wave is negative; in view of (5.4), one concludes that
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c2 <s<cI fora 1,2-shock "ave. -c1 <s<-c2 for a 2,1-shock wave. (5.5)

We now show that, in any solution to the Riemann problem that conforms to the entropy

inequality (2.11), there are at most two shock waves, and if there are two, one is of 2,1-type and

has negative velocity, while tne other is of 1,2-type and has positive velocity; see (5.5). Suppose

there are at least three shock waves, and let x=s t, j=1,2,3, with s<s2<S 3' represent three

consecutive ones. Note first that, by (5.5), either s and s2 are both negative, or s2 and s are

both positive. Hence either there are two consecutive shocks of 2,1-type, or there are two

consecutive 1,2-shc"ks. Since the strain must change branches across each shock, neither of

these cases is possible, and so three shock waves can not occur in any solution of the Riemann

problem that satisfies the entropy inequality at each of its strain discontinuities. Clearly, if there

are two shocks in any such solution, their velocities cannot have the same sign, so that by (5.5),

the Q.ocks are of opposite types.

The fact that there can be at most two shocks in any scale-invariant solution to the

Riemann problem that fulfills the entropy inequality at each strain jump makes it possible to

exhibit all such solutions. We say that a Riemann problem (or the corresponding initial data) is

of p,q-type ifyL is on branch p, yR on branch q, and we consider the various possible cases.

Case 1. 1,1-initial data. Suppose first that the initial data in (3.1) are suvh that 7 L and

YRarc both on branch I of the stress-strain curve. Clearly the number of shock waves must be

even in this case, in view of the general result established above, we conclude that the number of

shock waves must be either zero or two. But with initial data of 1,1-type, a solution with shock

waves would necessarily involve a 1,2-shock with negative propagation velocity and a 2,1-shock

with positive velocity, contradicting (5.5). Thus all discontinuities in any scale-invariant solution

to the 1,1-Riemann problem must be sound waves. More deailed consideration shows that there
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are exactly two types of solutions available: in one, the pattern of strain discontinuities in the

x, t-plane is as shown in Figure 2a. The only discontinuities are two 1,1-sound waves repre-

sented by the solid lines issuing from the origin in the figure. In the other, there are four sound

waves, as illustrated in Figure 2b.

For solutions of the type described by Figure 2a, the jump conditions (3.3) at the two

sound waves determine the unknown constant strain and particle velocity between the two

discontinuities, leading to a strain field given by

' x < -cIt,

y(x,t)- h, -cIt<x<cIt, (5.6)

YR ' X > CIt ',

where the parameter h is now defined by

Ci7L  C17R +VR- vLh = - c(5.7)
2c 1

cf. (4.1), (4.2). (For brevity, we henceforth omit formulas for the particle velocity field when

giving explicit solutions; v(x,t) is easily found once the strain field is known.) The strain as

given by (5.6) must lie in the branch-I interval (-1, TM); this will be the case if and only if the

given data are such that h<yM . Hence (5.6), (5.7), together with the appropriate particle velocity

field, p!-ovide a solution to the 1,1-Riemann problem satisfying the entropy inequality if and

only if this condition holds.
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When h > 7M' one can show that the appropriate pattern of discontinuities is that shown

in Figure 2b. The jump conditions (3.3) now lead to a strain field given by

SL, x<-clt,

YM, -clt < x <-C2t

C2y(x, t)= y M+ic(h -yM) , c2 t < X < C2 t, (5.8)

YM' c 2t < x < ClIt ,

YR' x > cIt,

with h again expressed in terms of initial data by (5.7).

Since the only discontinuities in the solutions (5.6), (5.8) are sound waves and the

material is bilinear, the entropy inequality is trivially satisfied at each jump. It should be noted,

however, that the latter inequality plays a crucial role in reaching the conclusion that the wave

pattern is as shown in Figure 2.

When h-,YM- in (5.6) or h->YM+ in (5.8), the two limiting strain fields coincide, as do the

corresponding particle velocities. The limiting fields represent entropically admissible solutions

to the 1,1-Riemann problem when h--yM.

Thus a unique solution to the 1,1 -Riemann problem that satisfies the entropy inequality

exists for every choice of initial data; for data such that h < yM' it is given by (5.6), for h > yM by

(5.8). For h < YM, the solution (5.6) leaves the bar entirely on branch 1 of the stress-strain curve

for all time, whereas for h > YM' the bar ultimately changes from branch 1, where it was initially,

to branch 2.
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Case 2. 1,2-initial data. Consider now a Riemann problem whose initial data are of

1,2-type: YLon branch 1, YR on branch 2. When applied to this case, the general results above

imply that there can be no more than one shock wave. Indeed, with h now defined to be

h = clyL + c27R + VR - vL (59)c1 +c 2

one readily shows that when the initial data are such that h < YM' the only scale-invariant solution

is one whose discontinuities are as shown in Figure 3a. By analyzing the jump conditions (3.3)

at the shock wave x=st and at the sound wave x=-c2t, one finds that the velocity s of the shock

wave is given in terms of initial data by

(clI - c 2)"/M + c2"/R - ClIh
= ;-c 'Y R-c (5.10)

R-h

the strain field associated with this solution is found to be

L' x < -cIt,

(c1 + c2)h + (s - c2)'YR
Y(x, 0 -c t<x<st, (5.11)

C+S

'YR' XSt.

One can show that the strain between the sound wave and the shock wave lies on branch 1 of the

stress-strain curve if and only if the velocity s of the 1,2-shock wave lies in the interval

c2 < s < c1, or equivalently if and only if h < 'M" The entropy inequality (2.11) holds because s>0

and f>0 at a 1,2-shock wave.
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When h > YM' the solution can be shown to have the form shown in Figure 3b: there are

three sound waves and no shock waves. Detailed calculation gives the strain field as

YL x <-c t,

YM c -It < x < -c 2t ,

'yx, t) c+c c-c 2  (5.12)
h- YM -ct<x~ c t

2 c2  2 c2

R, x >c 2t.

When h-> ym-' the solution represented by (5.11) tends to that given by (5.12) when h- yM+ .

As in the case of 1,1-initial data, the 1,2-Riemann problem has a unique solution

conforming to the entropy inequality at shock waves for every set of initial data. When the data

are such that h< yM' the solution is given by (5.11), and at infinte time, the strains in the bar are

all on branch 1. If h> YM' the solution is given by (5.12), and the bar is ultimately on branch 2.

The case hyM is again treated by taking the appropriate limit of (5.11) or (5.12).

Case 3. 2,2-initial data. Finally, for the Riemann problem with 2,2-initial data, there are

again two types of entropically admissible solutions corresponding to two subclasses of initial

data delineated by a parameter h that is now defined by

C2t L + C27 R + v R - vLh = 2y~~R R L(5.13)
2c2

If h< M , the solution has the structure illustrated in Figure 4a; it involves two shock waves and

no sound waves, and it causes the bar to change from branch 2 initially to branch I finally. If
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h > YM' the solution has no shocks and two 2,2-sound waves, as in Figure 4b; it leaves the bar on

branch 2. Since the analytic details are complicated in the 2,2-case, we omit the discussion of

the form taken by the strain field. It is important to note, however, that the velocities s and s2 of

the two shock waves in the case h< YM are fully determined in terms of initial data.

Thus in summary, with the entropy inequality in force, one finds that the Riemann

problem for the bilinear material has a unique scale-invariant solution for every set of initial data.

To demonstrate that this fails to be true if the entropy inequality is relinquished, we reconsider

the 1,2-Riemann problem. If one seeks a solution whose strain discontinuities are as shown in

Figure 5, one is led to the strain field given by

YL' x < -CIt,

c2 + s c1 - C2.. .+ Clt < x < st,
c/I+ h+ CI + sM

'Y(x,t) (5.14)
c1 - s c 1 -c 2

c- h 2- M'st<x<c2t'
c- s c- s

YR' x>c 2t,

where h is given by (5.9). If h > yM' the strain field given by (5.14) takes values in the

appropriate intervals, and together with a suitable particle velocity field, satisfies all jump

conditions, the initial conditions, and the differential equations, for any value of the shock wave

velocity s in the interval (-c1 , -c2). Thus one can construct a one-parameter family of solutions to

the 1,2-Riemann problem for h> yM' none of which coincides with the solution represented by

(5.12). However, in the field (5.14), the shock wave is of 1,2-type, and it travels with a negative

velocity. This violates the entropy inequality, and hence invalidates the one-parameter family of

solutions with strain fields (5.14).
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6. Trilinear materials and phase transitions. We turn now to the trilinear elastic

material, whose stress response function is given by

jtLiy, -I <y'<YM'

a(Y) -2 2 + , M_<7 _Ym ,  (6.1)

3"y ' Y m ;

A

the graph of a(y) is shown in Figure 6. It is assumed that g1' 92 and 9 3 are all positive, so that in

particular, the second branch of the curve has negative slope. We identify each branch of the

curve with a phase of the material: branches 1 and 3 are associated with stable or metastable

phases, while the declining branch corresponds to an unstable phase. As a function of 7 for fixed

a, the potential defined by G(ya)=W(y)-oay, with W given by (2.7), has extrema where
A A

G=W'(7)--o(y). When a(y) is given by (6.1) and for a between am and aM (Figure 6), G(-,a)

exemplifies a "two-well potential", having two minima corresponding to the stable and

metastable phases separated by a maximum that corresponds to the unstable phase.

In this section, we shall cite results from [3] that show that the Riemann problem for the

trilinear material does not have a unique solution, even with the entropy inequality in force. We

also indicate how the breakdown in uniqueness can be repaired.

A strain discontinuity is said to be a 1,1- or 3,3-sound wave if the strains y, y on either

side are both on branch I or both on branch 3, respectively. By (2.12), the negative slope of

branch 2 implies that there are no sound waves of 2,2-type. If y- is on branch 1 and y is on

branch 3, we call the discontinuity a 1,3-phase boundary, rather than a 1,3-shock wave. A

3,1-phase boundary is defined analogously. According to (2.12), the velocities of 1,1- and
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3,3-sound waves are ±c1 and ±c 3 , respectively, where cl=(gt/P) 1/ '2 , C3=(93/P) 1/ 2 , with c3 < c 1 .

By (2.12), the value of ps 2 coincides with the slope of the chord joining the two points on the

stress-strain curve that correspond to the states on the two sides of the discontinuity. Exploiting

this geometric result !eads to the conclusion that the velocity s of a phase boundary of either 1,3-

or 3,1-type satisfies

.2 2s <c*, (6.2)

where c. = {(c1 +-Yc )/(l+y)} ;1/2;onehasc 3 <c. <c 1* . A phase boundary is said to be

subsonic if Isl < c3, intersonic if c3 < Isl < c.. It is important to note that the velocity s of a phase

boundary may be zero, corresponding to a stationary interface between two phases in equilib-

rium.

As in the case of bilinear materials, the driving force vanishes at a sound wave of either

1,1 - or 3,3-type. At a phase boundary, however, the driving force f coincides with the signed

difference between the area under the stress-strain curve between y- and y and the area of the
- + A

trapezoid determined by vy, r (y) and a(y), so that the value of f may be positive, negative or

zero. In view of (2.12), this means that a phase boundary may move to the right, to the left or in

either direction according to whether f > 0, f < 0 or f = 0.

We now consider the Riemann problem for the trilinear material. Scale-invariant

solutions of this problem must again have the form (3.2), and they are of course again subject to

the jump conditions (3.3) and the entropy inequality (2.11) at each discontinuity. In the initial

conditions (3,1 ), we confine attention to metastable initial data: data for which neither of the

strains TL, 7R belongs to branch 2 of the stress-strain curve (the unstable phase). All results stated

without proof below are established in [3].
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For the trilinear material, every scale-invariant, entropically admissible solution to a

given Riemann problem with metastable initial data has the following properties:

(i) no strain y. in (3.2) belongs to branch 2;

(ii) there are at most two subsonic phase boundaries; if there are two, one moves

with non-negative velocity, the other with non-positive velocity;

(iii) there are at most two intersonic phase boundaries; if there are two, one moves with

positive velocity, the other with negative velocity;

(iv) either all phase boundaries are subsonic, or all are intersonic.

The proofs of these results rely heavily on the entropy inequality (2.11).

For the Riemann problem with metastable initial data, the qualitative conclusions stated

above make it possible to construct explicitly all solutions that satisfy the entropy inequality; this

was done in [3]. One finds that the situation regarding uniqueness differs drastically from that

encountered for the bilinear material, for which - as we have shown in the preceding section - the

entropy inequality is always sufficient for uniqueness. Indeed, two new phenomena arise in the

trilinear case. To illustrate the first of these, it is sufficient to consider the case of 1,3-initial data

in (3.1): 7 L on branch 1,,YR on branch 3. Let

h = cltL + c3 tR + yR - vL (6.3)
c1 + c3

h depends only on initial data. As shown in [3], if the intial data are such that h > 0, every

solution of the 1,3-Riemann problem that satisfies the entropy inequality has the structure
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sketched in Figure 7a: there is a single subsonic phase boundary at x=st and, in general, there are

two sound waves, one of 1,1-type, the other 3,3. The strain field in every such solution depends

on s and on the initial data only through h. The new feature is that the velocity s of the 1,3-phase

boundary is not determined by the initial data. The requirement that the strains in the various

sectors of the x,t-plane must lie on the appropriate branches of the stress-strain curve reduces to

c3-s c1 +
m h < YM , -c3 <s<c3 . (6.4)

c I - s c3 +s

Thus for given initial data such that h > 0, there is a one-parameter family (parameter s) of

solutions of the Riemann problem, each with the discontinuity structure shown in Figure 7a. The

inequalities (6.4) correspond to the region in the s, h-plane between the curves C1 and C2 shown

in Figure 8. Each point (s, h) in this region corresponds to a solution of the 1,3-Riemann

problem for initial data giving rise to the specified h and for the specified S.

Between C1 and C2 , there is a curve M whose points correspond to solutions in which

the driving force f at the phase boundary vanishes. On one side of M, f is positive, on the other

side negative; therefore only those points in the hatched regions in Figure 8 correspond to

solutions of the Riemann problem that satisfy the entropy inequality (2.11). Thus for given

initial data such that h > 0, there is a one-parameter family (parameter s) of solutions of the

Riemann problem, each with the discontinuity structure shown in Figure 7a and each satisfying

the entropy inequality. In the s, h-plane of Figure 8, this family corresponds to the horizontal

line segment through the value of h determined by the initial data, the segment commencing on

the curve M. The entropy inequality, while sufficient for uniqueness in the Riemann problem for

the bilinear material, is thus insufficient in general for uniqueness in the same problem for the

trilinear material.
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As argued in [3], the lack of uniqueness just described arises from the need to specify

additional constitutive information pertaining to the kinetics of the phase transition between

branches 1 and 3 of the stress-strain curve. As suggested by the discussions in [3], [8], [9] and

[1 1 ], such a kinetic relation might be expected to take the form of a relation f=(p(s) between

driving force f and phase boundary velocity s, to be imposed in addition to the jump conditions at

phase boundaries. In the context of the Riemann problem, such a kinetic law turns out to yield a
A.

materially-determined relation h=h(s) between the datum h and the phase boundary velocity s,
A(.

corresponding to the curve K shown schematically in Figure 7, in which h(s) increases

monotonically with s. A value of h corresponding to given initial data thus leads to a uniquely

determined phase boundary velocity s in the appropriate range, and hence to a unique solution of

the Riemann problem that satisfies the entropy inequality.

The description above pertains to the 1,3-Riemann problem with initial data for which h

in (6.3) is positive. It is shown in [3] that, when h is negative, the Riemann problem has a unique

solution whose discontinuity pattern is as shown in Figure 7b. In contrast to the case for h > 0,

the phase boundary is now intersonic, its velocity is determined by the initial data, and it is

neither necessary nor possible to impose a kinetic relation. The difference between subsonically

moving phase boundaries, for which kinetics must be prescribed, and intersonic ones, where

kinetics may not be imposed, apparently has a parallel in combustion theory, where deflagrations

require the prescription of the relevant kinetics, while detonations do not [10].

The second major distinction between the bilinear and trilinear materials pertains to the

nucleation of the pertinent phase transition in the latter case. To indicate the sense in which this

issue arises for the trilinear material, we consider the Riemann problem for initial data of

1,1-type, so that the strainsyL and "R are both in phase 1. Let
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h = ClYL + ClYR + VR- VL (6.5)
2c1

As shown in [3], the general consequences (i)-(iv) of the entropy inequality stated above imply

that every entropically admissible solution to the 1,1-Riemann problem must conform to one of

the two patterns of discontinuities shown in Figure 9. Solutions of the type associated with

Figure 9a involve no phase boundaries and therefore no phase changes; for these, the strains in

the bar always remain on branch 1 of the stress-strain curve. On the other hand, solutions of the

type represented by Figure 9b involve a change of phase initiated at time t=O that propagates

outward subsonically, leaving the bar in the high-strain phase (branch 3) in the long-time limit.

The crucial fact pertaining to the 1,1-Riemann problem is that there is an interval of values of the

parameter h, and hence a non-empty set of initial data, for which solutions of both types exist. A

criterion is needed to select which of these two types of solutions is preferred when the initial

data are such that both types are available; clearly, such a criterion serves precisely to determine

whether the bar is to change phase or not. One such "nucleation criterion" is proposed in [3, 9]: a

spontaneous phase transition takes place when the driving force f at an incipient phase boundary

equals or exceeds a certain materially-determined critical level f.. In the context of the

1,1 -Riemann problem, this criterion turns out to select the solution of Figure 9a (no phase

change) for h<h., where h. is a critical value of h corresponding to f.. For h > h., the solution

must have discontinuities as in Figure 9b, and a phase transformation must occur. When the

initial data give rise to a phase change, the phase boundary velocities s and s,, of Figure 9b are

not determined by the initial data alone, but rather require the kinetic relation as well for their

unique determination. In contrast, the solution of the type shown in Figure 9a involves no phase

transition and is fully and uniquely determined by the initial data.

One can also consider a trilinear material for which the slope of branch 2 of the

stress-strain curve remains positive but, say, less than the slopes of both branch I and branch 3.
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In this case, stress is a monotonically increasing but neither convex nor concave function of

strain. For such a material, equilibrium mixtures of phases and their associated stationary phase

boundaries cannot occur, but lack of uniqueness in the Riemann problem of the kind that requires

the specification of additional constitutive information nevertheless arises, just as in the case of

the non-monotonic trilinear material treated above and described in Figure 1.

7. Concluding remarks. In the framework of the one-dimensional dynamical theory of

bars, piecewise-linear elastic materials provide a vehicle for the illustration of the effect of the

character of the stress-strain curve. While initial data alone determine a unique solution to the

Riemann problem in the linear case, for the bilinear material, explicit calculations allow one to

show that uniqueness for the Riemann problem fails unless the entropy inequality is imposed at

all strain discontinuities, and that uniqueness holds globally when the inequality is in force. On

the other hand, for the trilinear material, the entropy inequality is not enough to furnish unique-

ness in the Riemann problem. From a physical viewpoint, this is perhaps to be expected, since

the trilinear material may be thought of as a simple model for a material capable of undergoing

stress-induced phase transitions. When one supplies pertinent information pertaining to the

nucleation and the kinetics of the transition, uniqueness for the Riemann problem is again

secured.

While the dynamical system associated with the bilinear material material does not

literally qualify as a "genuinely nonlinear" system in the sense of Lax [1], it does mimic the

properties of such systems. The trilinear material illustrates the nature of systems that are not

genuinely nonlinear, whether they be hyperbolic or of mixed type.
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